MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F3VCb vs. EN 1.4421 Stainless Steel

Both ASTM A182 grade F3VCb and EN 1.4421 stainless steel are iron alloys. They have 81% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F3VCb and the bottom bar is EN 1.4421 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 21
11 to 17
Fatigue Strength, MPa 320
380 to 520
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
77
Tensile Strength: Ultimate (UTS), MPa 670
880 to 1100
Tensile Strength: Yield (Proof), MPa 460
620 to 950

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 470
870
Melting Completion (Liquidus), °C 1470
1440
Melting Onset (Solidus), °C 1430
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 40
16
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
12
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.4
2.6
Embodied Energy, MJ/kg 33
36
Embodied Water, L/kg 64
130

Common Calculations

PREN (Pitting Resistance) 6.3
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
120 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 570
960 to 2270
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24
31 to 39
Strength to Weight: Bending, points 22
26 to 30
Thermal Diffusivity, mm2/s 11
4.4
Thermal Shock Resistance, points 19
31 to 39

Alloy Composition

Calcium (Ca), % 0.00050 to 0.015
0
Carbon (C), % 0.1 to 0.15
0 to 0.060
Chromium (Cr), % 2.7 to 3.3
15.5 to 17.5
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 93.8 to 95.8
74.4 to 80.5
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.9 to 1.1
0 to 0.7
Nickel (Ni), % 0 to 0.25
4.0 to 5.5
Niobium (Nb), % 0.015 to 0.070
0
Phosphorus (P), % 0 to 0.020
0 to 0.035
Silicon (Si), % 0 to 0.1
0 to 0.8
Sulfur (S), % 0 to 0.010
0 to 0.020
Titanium (Ti), % 0 to 0.015
0
Vanadium (V), % 0.2 to 0.3
0