MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F3VCb vs. CC331G Bronze

ASTM A182 grade F3VCb belongs to the iron alloys classification, while CC331G bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F3VCb and the bottom bar is CC331G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
140
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 21
20
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
43
Tensile Strength: Ultimate (UTS), MPa 670
620
Tensile Strength: Yield (Proof), MPa 460
240

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Maximum Temperature: Mechanical, °C 470
220
Melting Completion (Liquidus), °C 1470
1060
Melting Onset (Solidus), °C 1430
1000
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 40
61
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
13
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
14

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
28
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 2.4
3.2
Embodied Energy, MJ/kg 33
53
Embodied Water, L/kg 64
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
97
Resilience: Unit (Modulus of Resilience), kJ/m3 570
250
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 24
21
Strength to Weight: Bending, points 22
19
Thermal Diffusivity, mm2/s 11
17
Thermal Shock Resistance, points 19
22

Alloy Composition

Aluminum (Al), % 0
8.5 to 10.5
Calcium (Ca), % 0.00050 to 0.015
0
Carbon (C), % 0.1 to 0.15
0
Chromium (Cr), % 2.7 to 3.3
0
Copper (Cu), % 0 to 0.25
83 to 86.5
Iron (Fe), % 93.8 to 95.8
1.5 to 3.5
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.25
0 to 1.5
Niobium (Nb), % 0.015 to 0.070
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.1
0 to 0.2
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0 to 0.015
0
Vanadium (V), % 0.2 to 0.3
0
Zinc (Zn), % 0
0 to 0.5