MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F3VCb vs. Grade 29 Titanium

ASTM A182 grade F3VCb belongs to the iron alloys classification, while grade 29 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F3VCb and the bottom bar is grade 29 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 21
6.8 to 11
Fatigue Strength, MPa 320
460 to 510
Poisson's Ratio 0.29
0.32
Reduction in Area, % 50
17
Shear Modulus, GPa 74
40
Shear Strength, MPa 420
550 to 560
Tensile Strength: Ultimate (UTS), MPa 670
930 to 940
Tensile Strength: Yield (Proof), MPa 460
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 470
340
Melting Completion (Liquidus), °C 1470
1610
Melting Onset (Solidus), °C 1430
1560
Specific Heat Capacity, J/kg-K 470
560
Thermal Conductivity, W/m-K 40
7.3
Thermal Expansion, µm/m-K 13
9.3

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
36
Density, g/cm3 7.9
4.5
Embodied Carbon, kg CO2/kg material 2.4
39
Embodied Energy, MJ/kg 33
640
Embodied Water, L/kg 64
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
62 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 570
3420 to 3540
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 24
58 to 59
Strength to Weight: Bending, points 22
47 to 48
Thermal Diffusivity, mm2/s 11
2.9
Thermal Shock Resistance, points 19
68 to 69

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.5
Calcium (Ca), % 0.00050 to 0.015
0
Carbon (C), % 0.1 to 0.15
0 to 0.080
Chromium (Cr), % 2.7 to 3.3
0
Copper (Cu), % 0 to 0.25
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 93.8 to 95.8
0 to 0.25
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.25
0
Niobium (Nb), % 0.015 to 0.070
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.020
0
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.015
88 to 90.9
Vanadium (V), % 0.2 to 0.3
3.5 to 4.5
Residuals, % 0
0 to 0.4