MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F3VCb vs. SAE-AISI 9254 Steel

Both ASTM A182 grade F3VCb and SAE-AISI 9254 steel are iron alloys. Both are furnished in the annealed condition. They have a very high 96% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F3VCb and the bottom bar is SAE-AISI 9254 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
200
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 21
20
Fatigue Strength, MPa 320
280
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
72
Shear Strength, MPa 420
410
Tensile Strength: Ultimate (UTS), MPa 670
660
Tensile Strength: Yield (Proof), MPa 460
410

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 470
410
Melting Completion (Liquidus), °C 1470
1440
Melting Onset (Solidus), °C 1430
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 40
46
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
2.2
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.4
1.5
Embodied Energy, MJ/kg 33
20
Embodied Water, L/kg 64
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 570
450
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24
24
Strength to Weight: Bending, points 22
22
Thermal Diffusivity, mm2/s 11
12
Thermal Shock Resistance, points 19
20

Alloy Composition

Calcium (Ca), % 0.00050 to 0.015
0
Carbon (C), % 0.1 to 0.15
0.51 to 0.59
Chromium (Cr), % 2.7 to 3.3
0.6 to 0.8
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 93.8 to 95.8
96.1 to 97.1
Manganese (Mn), % 0.3 to 0.6
0.6 to 0.8
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.25
0
Niobium (Nb), % 0.015 to 0.070
0
Phosphorus (P), % 0 to 0.020
0 to 0.035
Silicon (Si), % 0 to 0.1
1.2 to 1.6
Sulfur (S), % 0 to 0.010
0 to 0.040
Titanium (Ti), % 0 to 0.015
0
Vanadium (V), % 0.2 to 0.3
0