MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F3VCb vs. C93800 Bronze

ASTM A182 grade F3VCb belongs to the iron alloys classification, while C93800 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F3VCb and the bottom bar is C93800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
96
Elongation at Break, % 21
9.7
Poisson's Ratio 0.29
0.35
Shear Modulus, GPa 74
35
Tensile Strength: Ultimate (UTS), MPa 670
200
Tensile Strength: Yield (Proof), MPa 460
120

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 470
140
Melting Completion (Liquidus), °C 1470
940
Melting Onset (Solidus), °C 1430
850
Specific Heat Capacity, J/kg-K 470
340
Thermal Conductivity, W/m-K 40
52
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
11
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
11

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
31
Density, g/cm3 7.9
9.1
Embodied Carbon, kg CO2/kg material 2.4
3.2
Embodied Energy, MJ/kg 33
51
Embodied Water, L/kg 64
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
17
Resilience: Unit (Modulus of Resilience), kJ/m3 570
70
Stiffness to Weight: Axial, points 13
5.9
Stiffness to Weight: Bending, points 24
17
Strength to Weight: Axial, points 24
6.1
Strength to Weight: Bending, points 22
8.4
Thermal Diffusivity, mm2/s 11
17
Thermal Shock Resistance, points 19
8.1

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.8
Calcium (Ca), % 0.00050 to 0.015
0
Carbon (C), % 0.1 to 0.15
0
Chromium (Cr), % 2.7 to 3.3
0
Copper (Cu), % 0 to 0.25
75 to 79
Iron (Fe), % 93.8 to 95.8
0 to 0.15
Lead (Pb), % 0
13 to 16
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.25
0 to 1.0
Niobium (Nb), % 0.015 to 0.070
0
Phosphorus (P), % 0 to 0.020
0 to 1.5
Silicon (Si), % 0 to 0.1
0 to 0.0050
Sulfur (S), % 0 to 0.010
0 to 0.080
Tin (Sn), % 0
6.3 to 7.5
Titanium (Ti), % 0 to 0.015
0
Vanadium (V), % 0.2 to 0.3
0
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 1.0