MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F3VCb vs. S33550 Stainless Steel

Both ASTM A182 grade F3VCb and S33550 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 57% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F3VCb and the bottom bar is S33550 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
190
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 21
40
Fatigue Strength, MPa 320
270
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 74
79
Shear Strength, MPa 420
470
Tensile Strength: Ultimate (UTS), MPa 670
680
Tensile Strength: Yield (Proof), MPa 460
310

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 470
1100
Melting Completion (Liquidus), °C 1470
1400
Melting Onset (Solidus), °C 1430
1360
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 40
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
24
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.4
4.3
Embodied Energy, MJ/kg 33
61
Embodied Water, L/kg 64
190

Common Calculations

PREN (Pitting Resistance) 6.3
30
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
220
Resilience: Unit (Modulus of Resilience), kJ/m3 570
250
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24
24
Strength to Weight: Bending, points 22
22
Thermal Diffusivity, mm2/s 11
3.9
Thermal Shock Resistance, points 19
15

Alloy Composition

Calcium (Ca), % 0.00050 to 0.015
0
Carbon (C), % 0.1 to 0.15
0.040 to 0.1
Cerium (Ce), % 0
0.025 to 0.070
Chromium (Cr), % 2.7 to 3.3
25 to 28
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 93.8 to 95.8
48.8 to 58.2
Lanthanum (La), % 0
0.025 to 0.070
Manganese (Mn), % 0.3 to 0.6
0 to 1.5
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.25
16.5 to 20
Niobium (Nb), % 0.015 to 0.070
0.050 to 0.15
Nitrogen (N), % 0
0.18 to 0.25
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.015
0
Vanadium (V), % 0.2 to 0.3
0