MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F3VCb vs. S44537 Stainless Steel

Both ASTM A182 grade F3VCb and S44537 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 78% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F3VCb and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
180
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 21
21
Fatigue Strength, MPa 320
230
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 74
79
Shear Strength, MPa 420
320
Tensile Strength: Ultimate (UTS), MPa 670
510
Tensile Strength: Yield (Proof), MPa 460
360

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 470
1000
Melting Completion (Liquidus), °C 1470
1480
Melting Onset (Solidus), °C 1430
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
21
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
19
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 2.4
3.4
Embodied Energy, MJ/kg 33
50
Embodied Water, L/kg 64
140

Common Calculations

PREN (Pitting Resistance) 6.3
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
95
Resilience: Unit (Modulus of Resilience), kJ/m3 570
320
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24
18
Strength to Weight: Bending, points 22
18
Thermal Diffusivity, mm2/s 11
5.6
Thermal Shock Resistance, points 19
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Calcium (Ca), % 0.00050 to 0.015
0
Carbon (C), % 0.1 to 0.15
0 to 0.030
Chromium (Cr), % 2.7 to 3.3
20 to 24
Copper (Cu), % 0 to 0.25
0 to 0.5
Iron (Fe), % 93.8 to 95.8
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Manganese (Mn), % 0.3 to 0.6
0 to 0.8
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.25
0 to 0.5
Niobium (Nb), % 0.015 to 0.070
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0 to 0.020
0 to 0.050
Silicon (Si), % 0 to 0.1
0.1 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.0060
Titanium (Ti), % 0 to 0.015
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0
Vanadium (V), % 0.2 to 0.3
0