MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F6b vs. Grade 25 Titanium

ASTM A182 grade F6b belongs to the iron alloys classification, while grade 25 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F6b and the bottom bar is grade 25 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 18
11
Fatigue Strength, MPa 440
550
Poisson's Ratio 0.28
0.32
Reduction in Area, % 51
29
Shear Modulus, GPa 76
40
Shear Strength, MPa 530
600
Tensile Strength: Ultimate (UTS), MPa 850
1000
Tensile Strength: Yield (Proof), MPa 710
940

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 750
340
Melting Completion (Liquidus), °C 1450
1610
Melting Onset (Solidus), °C 1400
1560
Specific Heat Capacity, J/kg-K 480
560
Thermal Conductivity, W/m-K 25
7.1
Thermal Expansion, µm/m-K 10
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
2.0

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 2.2
43
Embodied Energy, MJ/kg 30
700
Embodied Water, L/kg 100
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1280
4220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 30
62
Strength to Weight: Bending, points 26
50
Thermal Diffusivity, mm2/s 6.7
2.8
Thermal Shock Resistance, points 31
71

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0 to 0.15
0 to 0.080
Chromium (Cr), % 11.5 to 13.5
0
Copper (Cu), % 0 to 0.5
0
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 81.2 to 87.1
0 to 0.4
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.4 to 0.6
0
Nickel (Ni), % 1.0 to 2.0
0.3 to 0.8
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
86.7 to 90.6
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4