ASTM A227 Spring Steel vs. Grade 5 Titanium
ASTM A227 spring steel belongs to the iron alloys classification, while grade 5 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.
For each property being compared, the top bar is ASTM A227 spring steel and the bottom bar is grade 5 titanium.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
110 |
Elongation at Break, % | 12 | |
8.6 to 11 |
Fatigue Strength, MPa | 900 to 1160 | |
530 to 630 |
Poisson's Ratio | 0.29 | |
0.32 |
Shear Modulus, GPa | 72 | |
40 |
Shear Strength, MPa | 1030 to 1330 | |
600 to 710 |
Tensile Strength: Ultimate (UTS), MPa | 1720 to 2220 | |
1000 to 1190 |
Tensile Strength: Yield (Proof), MPa | 1430 to 1850 | |
910 to 1110 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
410 |
Maximum Temperature: Mechanical, °C | 400 | |
330 |
Melting Completion (Liquidus), °C | 1450 | |
1610 |
Melting Onset (Solidus), °C | 1410 | |
1650 |
Specific Heat Capacity, J/kg-K | 470 | |
560 |
Thermal Conductivity, W/m-K | 52 | |
6.8 |
Thermal Expansion, µm/m-K | 12 | |
8.9 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.2 | |
1.0 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.3 | |
2.0 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 1.8 | |
36 |
Density, g/cm3 | 7.8 | |
4.4 |
Embodied Carbon, kg CO2/kg material | 1.4 | |
38 |
Embodied Energy, MJ/kg | 19 | |
610 |
Embodied Water, L/kg | 46 | |
200 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 200 to 260 | |
100 to 110 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
35 |
Strength to Weight: Axial, points | 61 to 79 | |
62 to 75 |
Strength to Weight: Bending, points | 41 to 48 | |
50 to 56 |
Thermal Diffusivity, mm2/s | 14 | |
2.7 |
Thermal Shock Resistance, points | 55 to 71 | |
76 to 91 |
Alloy Composition
Aluminum (Al), % | 0 | |
5.5 to 6.8 |
Carbon (C), % | 0.45 to 0.85 | |
0 to 0.080 |
Hydrogen (H), % | 0 | |
0 to 0.015 |
Iron (Fe), % | 97.4 to 99.1 | |
0 to 0.4 |
Manganese (Mn), % | 0.3 to 1.3 | |
0 |
Nitrogen (N), % | 0 | |
0 to 0.050 |
Oxygen (O), % | 0 | |
0 to 0.2 |
Phosphorus (P), % | 0 to 0.040 | |
0 |
Silicon (Si), % | 0.15 to 0.35 | |
0 |
Sulfur (S), % | 0 to 0.050 | |
0 |
Titanium (Ti), % | 0 | |
87.4 to 91 |
Vanadium (V), % | 0 | |
3.5 to 4.5 |
Yttrium (Y), % | 0 | |
0 to 0.0050 |
Residuals, % | 0 | |
0 to 0.4 |