MakeItFrom.com
Menu (ESC)

ASTM A229 Spring Steel vs. Nickel 693

ASTM A229 spring steel belongs to the iron alloys classification, while nickel 693 belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A229 spring steel and the bottom bar is nickel 693.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 14
34
Fatigue Strength, MPa 710 to 790
230
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
76
Shear Strength, MPa 1020 to 1140
440
Tensile Strength: Ultimate (UTS), MPa 1690 to 1890
660
Tensile Strength: Yield (Proof), MPa 1100 to 1230
310

Thermal Properties

Latent Heat of Fusion, J/g 250
330
Maximum Temperature: Mechanical, °C 400
1010
Melting Completion (Liquidus), °C 1450
1350
Melting Onset (Solidus), °C 1410
1310
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 50
9.1
Thermal Expansion, µm/m-K 12
13

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
60
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 1.4
9.9
Embodied Energy, MJ/kg 19
140
Embodied Water, L/kg 46
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 230
190
Resilience: Unit (Modulus of Resilience), kJ/m3 3260 to 4080
250
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 60 to 67
23
Strength to Weight: Bending, points 40 to 43
21
Thermal Diffusivity, mm2/s 14
2.3
Thermal Shock Resistance, points 54 to 60
19

Alloy Composition

Aluminum (Al), % 0
2.5 to 4.0
Carbon (C), % 0.55 to 0.85
0 to 0.15
Chromium (Cr), % 0
27 to 31
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 97.5 to 99
2.5 to 6.0
Manganese (Mn), % 0.3 to 1.2
0 to 1.0
Nickel (Ni), % 0
53.3 to 67.5
Niobium (Nb), % 0
0.5 to 2.5
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0.15 to 0.35
0 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.010
Titanium (Ti), % 0
0 to 1.0