MakeItFrom.com
Menu (ESC)

ASTM A356 Grade 10 vs. EN 1.8818 Steel

Both ASTM A356 grade 10 and EN 1.8818 steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A356 grade 10 and the bottom bar is EN 1.8818 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
130
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23
27
Fatigue Strength, MPa 300
200
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
73
Tensile Strength: Ultimate (UTS), MPa 670
440
Tensile Strength: Yield (Proof), MPa 430
270

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 460
400
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
48
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 3.9
2.4
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.8
1.6
Embodied Energy, MJ/kg 23
21
Embodied Water, L/kg 59
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
110
Resilience: Unit (Modulus of Resilience), kJ/m3 480
200
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
16
Strength to Weight: Bending, points 22
16
Thermal Diffusivity, mm2/s 11
13
Thermal Shock Resistance, points 19
13

Alloy Composition

Aluminum (Al), % 0
0.015 to 0.034
Carbon (C), % 0 to 0.2
0 to 0.15
Chromium (Cr), % 2.0 to 2.8
0 to 0.35
Copper (Cu), % 0
0 to 0.6
Iron (Fe), % 94.4 to 96.6
95.9 to 99.985
Manganese (Mn), % 0.5 to 0.8
0 to 1.6
Molybdenum (Mo), % 0.9 to 1.2
0 to 0.13
Nickel (Ni), % 0
0 to 0.35
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.017
Phosphorus (P), % 0 to 0.035
0 to 0.035
Silicon (Si), % 0 to 0.6
0 to 0.55
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0
0 to 0.1