MakeItFrom.com
Menu (ESC)

ASTM A356 Grade 10 vs. C65400 Bronze

ASTM A356 grade 10 belongs to the iron alloys classification, while C65400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is ASTM A356 grade 10 and the bottom bar is C65400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 23
2.6 to 47
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
43
Tensile Strength: Ultimate (UTS), MPa 670
500 to 1060
Tensile Strength: Yield (Proof), MPa 430
170 to 910

Thermal Properties

Latent Heat of Fusion, J/g 260
260
Maximum Temperature: Mechanical, °C 460
200
Melting Completion (Liquidus), °C 1470
1020
Melting Onset (Solidus), °C 1430
960
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 39
36
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 3.9
31
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 1.8
2.8
Embodied Energy, MJ/kg 23
45
Embodied Water, L/kg 59
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
10 to 480
Resilience: Unit (Modulus of Resilience), kJ/m3 480
130 to 3640
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 24
16 to 34
Strength to Weight: Bending, points 22
16 to 27
Thermal Diffusivity, mm2/s 11
10
Thermal Shock Resistance, points 19
18 to 39

Alloy Composition

Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 2.0 to 2.8
0.010 to 0.12
Copper (Cu), % 0
93.8 to 96.1
Iron (Fe), % 94.4 to 96.6
0
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.5 to 0.8
0
Molybdenum (Mo), % 0.9 to 1.2
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.6
2.7 to 3.4
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.2 to 1.9
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.2