MakeItFrom.com
Menu (ESC)

ASTM A356 Grade 10 vs. C67500 Bronze

ASTM A356 grade 10 belongs to the iron alloys classification, while C67500 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM A356 grade 10 and the bottom bar is C67500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 23
14 to 33
Poisson's Ratio 0.29
0.3
Shear Modulus, GPa 74
40
Tensile Strength: Ultimate (UTS), MPa 670
430 to 580
Tensile Strength: Yield (Proof), MPa 430
170 to 370

Thermal Properties

Latent Heat of Fusion, J/g 260
170
Maximum Temperature: Mechanical, °C 460
120
Melting Completion (Liquidus), °C 1470
890
Melting Onset (Solidus), °C 1430
870
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 39
110
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
24
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
27

Otherwise Unclassified Properties

Base Metal Price, % relative 3.9
23
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 1.8
2.8
Embodied Energy, MJ/kg 23
47
Embodied Water, L/kg 59
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
61 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 480
130 to 650
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 24
15 to 20
Strength to Weight: Bending, points 22
16 to 19
Thermal Diffusivity, mm2/s 11
34
Thermal Shock Resistance, points 19
14 to 19

Alloy Composition

Aluminum (Al), % 0
0 to 0.25
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 2.0 to 2.8
0
Copper (Cu), % 0
57 to 60
Iron (Fe), % 94.4 to 96.6
0.8 to 2.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0.5 to 0.8
0.050 to 0.5
Molybdenum (Mo), % 0.9 to 1.2
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.5 to 1.5
Zinc (Zn), % 0
35.1 to 41.7
Residuals, % 0
0 to 0.5