MakeItFrom.com
Menu (ESC)

ASTM A356 Grade 10 vs. C69400 Brass

ASTM A356 grade 10 belongs to the iron alloys classification, while C69400 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM A356 grade 10 and the bottom bar is C69400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 23
17
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
42
Tensile Strength: Ultimate (UTS), MPa 670
570
Tensile Strength: Yield (Proof), MPa 430
270

Thermal Properties

Latent Heat of Fusion, J/g 260
260
Maximum Temperature: Mechanical, °C 460
170
Melting Completion (Liquidus), °C 1470
920
Melting Onset (Solidus), °C 1430
820
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 39
26
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
6.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 3.9
27
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 1.8
2.7
Embodied Energy, MJ/kg 23
44
Embodied Water, L/kg 59
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
80
Resilience: Unit (Modulus of Resilience), kJ/m3 480
340
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 24
19
Strength to Weight: Bending, points 22
18
Thermal Diffusivity, mm2/s 11
7.7
Thermal Shock Resistance, points 19
20

Alloy Composition

Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 2.0 to 2.8
0
Copper (Cu), % 0
80 to 83
Iron (Fe), % 94.4 to 96.6
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0.5 to 0.8
0
Molybdenum (Mo), % 0.9 to 1.2
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.6
3.5 to 4.5
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
11.5 to 16.5
Residuals, % 0
0 to 0.5