MakeItFrom.com
Menu (ESC)

ASTM A356 Grade 10 vs. C86800 Bronze

ASTM A356 grade 10 belongs to the iron alloys classification, while C86800 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ASTM A356 grade 10 and the bottom bar is C86800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 23
22
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 74
42
Tensile Strength: Ultimate (UTS), MPa 670
570
Tensile Strength: Yield (Proof), MPa 430
260

Thermal Properties

Latent Heat of Fusion, J/g 260
180
Maximum Temperature: Mechanical, °C 460
140
Melting Completion (Liquidus), °C 1470
900
Melting Onset (Solidus), °C 1430
880
Specific Heat Capacity, J/kg-K 470
400
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
10

Otherwise Unclassified Properties

Base Metal Price, % relative 3.9
24
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 1.8
3.0
Embodied Energy, MJ/kg 23
51
Embodied Water, L/kg 59
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
100
Resilience: Unit (Modulus of Resilience), kJ/m3 480
310
Stiffness to Weight: Axial, points 13
7.7
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 24
20
Strength to Weight: Bending, points 22
19
Thermal Shock Resistance, points 19
18

Alloy Composition

Aluminum (Al), % 0
0 to 2.0
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 2.0 to 2.8
0
Copper (Cu), % 0
53.5 to 57
Iron (Fe), % 94.4 to 96.6
1.0 to 2.5
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0.5 to 0.8
2.5 to 4.0
Molybdenum (Mo), % 0.9 to 1.2
0
Nickel (Ni), % 0
2.5 to 4.0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 1.0
Zinc (Zn), % 0
28.3 to 40.5
Residuals, % 0
0 to 1.0