MakeItFrom.com
Menu (ESC)

ASTM A356 Grade 10 vs. C97800 Nickel Silver

ASTM A356 grade 10 belongs to the iron alloys classification, while C97800 nickel silver belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A356 grade 10 and the bottom bar is C97800 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
130
Elongation at Break, % 23
10
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
48
Tensile Strength: Ultimate (UTS), MPa 670
370
Tensile Strength: Yield (Proof), MPa 430
170

Thermal Properties

Latent Heat of Fusion, J/g 260
220
Maximum Temperature: Mechanical, °C 460
230
Melting Completion (Liquidus), °C 1470
1180
Melting Onset (Solidus), °C 1430
1140
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 39
25
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
4.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
4.1

Otherwise Unclassified Properties

Base Metal Price, % relative 3.9
40
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 1.8
5.1
Embodied Energy, MJ/kg 23
76
Embodied Water, L/kg 59
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
31
Resilience: Unit (Modulus of Resilience), kJ/m3 480
120
Stiffness to Weight: Axial, points 13
8.1
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 24
12
Strength to Weight: Bending, points 22
13
Thermal Diffusivity, mm2/s 11
7.3
Thermal Shock Resistance, points 19
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 2.0 to 2.8
0
Copper (Cu), % 0
64 to 67
Iron (Fe), % 94.4 to 96.6
0 to 1.5
Lead (Pb), % 0
1.0 to 2.5
Manganese (Mn), % 0.5 to 0.8
0
Molybdenum (Mo), % 0.9 to 1.2
0
Nickel (Ni), % 0
24 to 27
Phosphorus (P), % 0 to 0.035
0 to 0.050
Silicon (Si), % 0 to 0.6
0 to 0.15
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
4.0 to 5.5
Zinc (Zn), % 0
1.0 to 4.0
Residuals, % 0
0 to 0.4