MakeItFrom.com
Menu (ESC)

ASTM A356 Grade 5 vs. AWS BNi-3

ASTM A356 grade 5 belongs to the iron alloys classification, while AWS BNi-3 belongs to the nickel alloys. There are 19 material properties with values for both materials. Properties with values for just one material (14, in this case) are not shown.

For each property being compared, the top bar is ASTM A356 grade 5 and the bottom bar is AWS BNi-3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
170
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
66
Tensile Strength: Ultimate (UTS), MPa 550
430

Thermal Properties

Latent Heat of Fusion, J/g 250
350
Melting Completion (Liquidus), °C 1470
1040
Melting Onset (Solidus), °C 1420
980
Specific Heat Capacity, J/kg-K 470
480
Thermal Expansion, µm/m-K 13
10

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
60
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 1.5
9.9
Embodied Energy, MJ/kg 20
140
Embodied Water, L/kg 49
220

Common Calculations

Stiffness to Weight: Axial, points 13
12
Stiffness to Weight: Bending, points 24
22
Strength to Weight: Axial, points 20
14
Strength to Weight: Bending, points 19
15
Thermal Shock Resistance, points 16
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Boron (B), % 0
2.8 to 3.5
Carbon (C), % 0 to 0.25
0 to 0.060
Chromium (Cr), % 0.4 to 0.7
0
Cobalt (Co), % 0
0 to 0.1
Iron (Fe), % 97.1 to 99.2
0 to 0.5
Manganese (Mn), % 0 to 0.7
0
Molybdenum (Mo), % 0.4 to 0.6
0
Nickel (Ni), % 0
90.1 to 93.3
Phosphorus (P), % 0 to 0.035
0 to 0.020
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0 to 0.6
4.0 to 5.0
Sulfur (S), % 0 to 0.030
0 to 0.020
Titanium (Ti), % 0
0 to 0.050
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0
0 to 0.5