MakeItFrom.com
Menu (ESC)

ASTM A372 Grade G Steel vs. Grade 13 Titanium

ASTM A372 grade G steel belongs to the iron alloys classification, while grade 13 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A372 grade G steel and the bottom bar is grade 13 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20 to 22
27
Fatigue Strength, MPa 310 to 380
140
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
41
Shear Strength, MPa 410 to 570
200
Tensile Strength: Ultimate (UTS), MPa 650 to 910
310
Tensile Strength: Yield (Proof), MPa 430 to 550
190

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 410
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 46
22
Thermal Expansion, µm/m-K 13
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
7.2

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.5
32
Embodied Energy, MJ/kg 20
520
Embodied Water, L/kg 49
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 160
73
Resilience: Unit (Modulus of Resilience), kJ/m3 500 to 810
180
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 23 to 32
19
Strength to Weight: Bending, points 21 to 27
22
Thermal Diffusivity, mm2/s 13
8.9
Thermal Shock Resistance, points 19 to 27
24

Alloy Composition

Carbon (C), % 0.25 to 0.35
0 to 0.080
Chromium (Cr), % 0.4 to 0.65
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 97.4 to 98.4
0 to 0.2
Manganese (Mn), % 0.7 to 1.0
0
Molybdenum (Mo), % 0.15 to 0.25
0
Nickel (Ni), % 0
0.4 to 0.6
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.015
0
Ruthenium (Ru), % 0
0.040 to 0.060
Silicon (Si), % 0.15 to 0.35
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
98.5 to 99.56
Residuals, % 0
0 to 0.4