MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 21L Class 1 vs. AWS ER80S-B8

Both ASTM A387 grade 21L class 1 and AWS ER80S-B8 are iron alloys. They have a moderately high 93% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 21L class 1 and the bottom bar is AWS ER80S-B8.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 21
19
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
75
Tensile Strength: Ultimate (UTS), MPa 500
630
Tensile Strength: Yield (Proof), MPa 230
530

Thermal Properties

Latent Heat of Fusion, J/g 260
270
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 41
26
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 4.1
6.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.8
2.0
Embodied Energy, MJ/kg 23
28
Embodied Water, L/kg 62
89

Common Calculations

PREN (Pitting Resistance) 6.4
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 84
120
Resilience: Unit (Modulus of Resilience), kJ/m3 140
720
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 18
22
Strength to Weight: Bending, points 18
21
Thermal Diffusivity, mm2/s 11
6.9
Thermal Shock Resistance, points 14
17

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.1
Chromium (Cr), % 2.8 to 3.3
8.0 to 10.5
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 94.4 to 96.1
85.6 to 90.8
Manganese (Mn), % 0.3 to 0.6
0.4 to 0.7
Molybdenum (Mo), % 0.9 to 1.1
0.8 to 1.2
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.025
0 to 0.025
Residuals, % 0
0 to 0.5