MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 91 Class 2 vs. Grade 5 Titanium

ASTM A387 grade 91 class 2 belongs to the iron alloys classification, while grade 5 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 91 class 2 and the bottom bar is grade 5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20
8.6 to 11
Fatigue Strength, MPa 330
530 to 630
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 75
40
Shear Strength, MPa 420
600 to 710
Tensile Strength: Ultimate (UTS), MPa 670
1000 to 1190
Tensile Strength: Yield (Proof), MPa 470
910 to 1110

Thermal Properties

Latent Heat of Fusion, J/g 270
410
Maximum Temperature: Mechanical, °C 600
330
Melting Completion (Liquidus), °C 1460
1610
Melting Onset (Solidus), °C 1420
1650
Specific Heat Capacity, J/kg-K 470
560
Thermal Conductivity, W/m-K 26
6.8
Thermal Expansion, µm/m-K 13
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
36
Density, g/cm3 7.8
4.4
Embodied Carbon, kg CO2/kg material 2.6
38
Embodied Energy, MJ/kg 37
610
Embodied Water, L/kg 88
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
100 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 580
3980 to 5880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 24
62 to 75
Strength to Weight: Bending, points 22
50 to 56
Thermal Diffusivity, mm2/s 6.9
2.7
Thermal Shock Resistance, points 19
76 to 91

Alloy Composition

Aluminum (Al), % 0 to 0.020
5.5 to 6.8
Carbon (C), % 0.080 to 0.12
0 to 0.080
Chromium (Cr), % 8.0 to 9.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 87.3 to 90.3
0 to 0.4
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.85 to 1.1
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0.2 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.010
87.4 to 91
Vanadium (V), % 0.18 to 0.25
3.5 to 4.5
Yttrium (Y), % 0
0 to 0.0050
Zirconium (Zr), % 0 to 0.010
0
Residuals, % 0
0 to 0.4