MakeItFrom.com
Menu (ESC)

ASTM B817 Type I vs. Monel 400

ASTM B817 type I belongs to the titanium alloys classification, while Monel 400 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM B817 type I and the bottom bar is Monel 400.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
160
Elongation at Break, % 4.0 to 13
20 to 40
Fatigue Strength, MPa 360 to 520
230 to 290
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 40
62
Tensile Strength: Ultimate (UTS), MPa 770 to 960
540 to 780
Tensile Strength: Yield (Proof), MPa 700 to 860
210 to 590

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Maximum Temperature: Mechanical, °C 340
1000
Melting Completion (Liquidus), °C 1600
1350
Melting Onset (Solidus), °C 1550
1300
Specific Heat Capacity, J/kg-K 560
430
Thermal Conductivity, W/m-K 7.1
23
Thermal Expansion, µm/m-K 9.6
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 36
50
Density, g/cm3 4.4
8.9
Embodied Carbon, kg CO2/kg material 38
7.9
Embodied Energy, MJ/kg 610
110
Embodied Water, L/kg 200
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
140 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 2310 to 3540
140 to 1080
Stiffness to Weight: Axial, points 13
10
Stiffness to Weight: Bending, points 35
21
Strength to Weight: Axial, points 48 to 60
17 to 25
Strength to Weight: Bending, points 42 to 49
17 to 21
Thermal Diffusivity, mm2/s 2.9
6.1
Thermal Shock Resistance, points 54 to 68
17 to 25

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.1
0 to 0.3
Chlorine (Cl), % 0 to 0.2
0
Copper (Cu), % 0
28 to 34
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 2.5
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
63 to 72
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.3
0
Silicon (Si), % 0 to 0.1
0 to 0.5
Sodium (Na), % 0 to 0.2
0
Sulfur (S), % 0
0 to 0.024
Titanium (Ti), % 87 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0