ASTM B817 Type II vs. SAE-AISI 9310 Steel
ASTM B817 type II belongs to the titanium alloys classification, while SAE-AISI 9310 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.
For each property being compared, the top bar is ASTM B817 type II and the bottom bar is SAE-AISI 9310 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 100 | |
190 |
Elongation at Break, % | 3.0 to 13 | |
17 to 19 |
Fatigue Strength, MPa | 390 to 530 | |
300 to 390 |
Poisson's Ratio | 0.32 | |
0.29 |
Shear Modulus, GPa | 40 | |
73 |
Tensile Strength: Ultimate (UTS), MPa | 900 to 960 | |
820 to 910 |
Tensile Strength: Yield (Proof), MPa | 780 to 900 | |
450 to 570 |
Thermal Properties
Latent Heat of Fusion, J/g | 400 | |
250 |
Maximum Temperature: Mechanical, °C | 350 | |
440 |
Melting Completion (Liquidus), °C | 1580 | |
1460 |
Melting Onset (Solidus), °C | 1530 | |
1420 |
Specific Heat Capacity, J/kg-K | 550 | |
470 |
Thermal Expansion, µm/m-K | 9.9 | |
13 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 37 | |
4.4 |
Density, g/cm3 | 4.6 | |
7.9 |
Embodied Carbon, kg CO2/kg material | 40 | |
1.8 |
Embodied Energy, MJ/kg | 650 | |
24 |
Embodied Water, L/kg | 220 | |
57 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 26 to 120 | |
120 to 150 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 2890 to 3890 | |
540 to 860 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 34 | |
24 |
Strength to Weight: Axial, points | 55 to 58 | |
29 to 32 |
Strength to Weight: Bending, points | 45 to 47 | |
25 to 27 |
Thermal Shock Resistance, points | 62 to 66 | |
24 to 27 |
Alloy Composition
Aluminum (Al), % | 5.0 to 6.0 | |
0 |
Carbon (C), % | 0 to 0.1 | |
0.080 to 0.13 |
Chlorine (Cl), % | 0 to 0.2 | |
0 |
Chromium (Cr), % | 0 | |
1.0 to 1.4 |
Copper (Cu), % | 0.35 to 1.0 | |
0 |
Hydrogen (H), % | 0 to 0.015 | |
0 |
Iron (Fe), % | 0.35 to 1.0 | |
93.8 to 95.2 |
Manganese (Mn), % | 0 | |
0.45 to 0.65 |
Molybdenum (Mo), % | 0 | |
0.080 to 0.15 |
Nickel (Ni), % | 0 | |
3.0 to 3.5 |
Nitrogen (N), % | 0 to 0.040 | |
0 |
Oxygen (O), % | 0 to 0.3 | |
0 |
Phosphorus (P), % | 0 | |
0 to 0.015 |
Silicon (Si), % | 0 to 0.1 | |
0.2 to 0.35 |
Sodium (Na), % | 0 to 0.2 | |
0 |
Sulfur (S), % | 0 | |
0 to 0.012 |
Tin (Sn), % | 1.5 to 2.5 | |
0 |
Titanium (Ti), % | 82.1 to 87.8 | |
0 |
Vanadium (V), % | 5.0 to 6.0 | |
0 |
Residuals, % | 0 to 0.4 | |
0 |