MakeItFrom.com
Menu (ESC)

ASTM Grade LC3 Steel vs. Grade 9 Titanium

ASTM grade LC3 steel belongs to the iron alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LC3 steel and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 27
11 to 17
Fatigue Strength, MPa 230
330 to 480
Poisson's Ratio 0.29
0.32
Reduction in Area, % 40
28
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 570
700 to 960
Tensile Strength: Yield (Proof), MPa 310
540 to 830

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 410
330
Melting Completion (Liquidus), °C 1460
1640
Melting Onset (Solidus), °C 1420
1590
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 52
8.1
Thermal Expansion, µm/m-K 13
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
37
Density, g/cm3 7.9
4.5
Embodied Carbon, kg CO2/kg material 1.7
36
Embodied Energy, MJ/kg 23
580
Embodied Water, L/kg 52
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 260
1380 to 3220
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 20
43 to 60
Strength to Weight: Bending, points 19
39 to 48
Thermal Diffusivity, mm2/s 14
3.3
Thermal Shock Resistance, points 17
52 to 71

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0 to 0.15
0 to 0.080
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 94.4 to 96.5
0 to 0.25
Manganese (Mn), % 0.5 to 0.8
0
Nickel (Ni), % 3.0 to 4.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.045
0
Titanium (Ti), % 0
92.6 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4