MakeItFrom.com
Menu (ESC)

AWS BNi-1 vs. Grade 31 Titanium

AWS BNi-1 belongs to the nickel alloys classification, while grade 31 titanium belongs to the titanium alloys. There are 18 material properties with values for both materials. Properties with values for just one material (14, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-1 and the bottom bar is grade 31 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 180
110
Poisson's Ratio 0.3
0.32
Shear Modulus, GPa 70
41
Tensile Strength: Ultimate (UTS), MPa 450
510

Thermal Properties

Latent Heat of Fusion, J/g 360
420
Melting Completion (Liquidus), °C 1040
1660
Melting Onset (Solidus), °C 980
1610
Specific Heat Capacity, J/kg-K 500
540
Thermal Expansion, µm/m-K 12
8.7

Otherwise Unclassified Properties

Density, g/cm3 8.0
4.5
Embodied Carbon, kg CO2/kg material 8.8
36
Embodied Energy, MJ/kg 120
600
Embodied Water, L/kg 240
230

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 16
32
Strength to Weight: Bending, points 16
32
Thermal Shock Resistance, points 15
39

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Boron (B), % 2.8 to 3.5
0
Carbon (C), % 0.6 to 0.9
0 to 0.080
Chromium (Cr), % 13 to 15
0
Cobalt (Co), % 0 to 0.1
0.2 to 0.8
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 4.0 to 5.0
0 to 0.3
Nickel (Ni), % 69.8 to 75.7
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.35
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.020
0
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 4.0 to 5.0
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0 to 0.050
97.9 to 99.76
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0
0 to 0.4