MakeItFrom.com
Menu (ESC)

AWS BNi-3 vs. AWS E410

AWS BNi-3 belongs to the nickel alloys classification, while AWS E410 belongs to the iron alloys. There are 19 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-3 and the bottom bar is AWS E410.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 170
190
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 66
76
Tensile Strength: Ultimate (UTS), MPa 430
580

Thermal Properties

Latent Heat of Fusion, J/g 350
270
Melting Completion (Liquidus), °C 1040
1450
Melting Onset (Solidus), °C 980
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Expansion, µm/m-K 10
14

Otherwise Unclassified Properties

Base Metal Price, % relative 60
7.5
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 9.9
2.0
Embodied Energy, MJ/kg 140
28
Embodied Water, L/kg 220
100

Common Calculations

Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 22
25
Strength to Weight: Axial, points 14
21
Strength to Weight: Bending, points 15
20
Thermal Shock Resistance, points 17
16

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Boron (B), % 2.8 to 3.5
0
Carbon (C), % 0 to 0.060
0 to 0.12
Chromium (Cr), % 0
11 to 13.5
Cobalt (Co), % 0 to 0.1
0
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 0 to 0.5
82.2 to 89
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 90.1 to 93.3
0 to 0.7
Phosphorus (P), % 0 to 0.020
0 to 0.040
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 4.0 to 5.0
0 to 0.9
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0 to 0.050
0
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0 to 0.5
0