MakeItFrom.com
Menu (ESC)

AWS BNi-3 vs. AWS E430Nb

AWS BNi-3 belongs to the nickel alloys classification, while AWS E430Nb belongs to the iron alloys. There are 19 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-3 and the bottom bar is AWS E430Nb.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 170
200
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 66
77
Tensile Strength: Ultimate (UTS), MPa 430
500

Thermal Properties

Latent Heat of Fusion, J/g 350
280
Melting Completion (Liquidus), °C 1040
1450
Melting Onset (Solidus), °C 980
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Expansion, µm/m-K 10
14

Otherwise Unclassified Properties

Base Metal Price, % relative 60
15
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 9.9
3.1
Embodied Energy, MJ/kg 140
45
Embodied Water, L/kg 220
120

Common Calculations

Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 22
25
Strength to Weight: Axial, points 14
18
Strength to Weight: Bending, points 15
18
Thermal Shock Resistance, points 17
13

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Boron (B), % 2.8 to 3.5
0
Carbon (C), % 0 to 0.060
0 to 0.1
Chromium (Cr), % 0
15 to 18
Cobalt (Co), % 0 to 0.1
0
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 0 to 0.5
76.2 to 84.5
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 90.1 to 93.3
0 to 0.6
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0 to 0.020
0 to 0.040
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 4.0 to 5.0
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0 to 0.050
0
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0 to 0.5
0