MakeItFrom.com
Menu (ESC)

AWS BNi-3 vs. C46500 Brass

AWS BNi-3 belongs to the nickel alloys classification, while C46500 brass belongs to the copper alloys. There are 19 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-3 and the bottom bar is C46500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 170
100
Poisson's Ratio 0.31
0.31
Shear Modulus, GPa 66
40
Tensile Strength: Ultimate (UTS), MPa 430
380 to 610

Thermal Properties

Latent Heat of Fusion, J/g 350
170
Melting Completion (Liquidus), °C 1040
900
Melting Onset (Solidus), °C 980
890
Specific Heat Capacity, J/kg-K 480
380
Thermal Expansion, µm/m-K 10
21

Otherwise Unclassified Properties

Base Metal Price, % relative 60
23
Density, g/cm3 8.3
8.0
Embodied Carbon, kg CO2/kg material 9.9
2.7
Embodied Energy, MJ/kg 140
47
Embodied Water, L/kg 220
330

Common Calculations

Stiffness to Weight: Axial, points 12
7.2
Stiffness to Weight: Bending, points 22
20
Strength to Weight: Axial, points 14
13 to 21
Strength to Weight: Bending, points 15
15 to 20
Thermal Shock Resistance, points 17
13 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Arsenic (As), % 0
0.020 to 0.060
Boron (B), % 2.8 to 3.5
0
Carbon (C), % 0 to 0.060
0
Cobalt (Co), % 0 to 0.1
0
Copper (Cu), % 0
59 to 62
Iron (Fe), % 0 to 0.5
0 to 0.1
Lead (Pb), % 0
0 to 0.2
Nickel (Ni), % 90.1 to 93.3
0
Phosphorus (P), % 0 to 0.020
0
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 4.0 to 5.0
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0.5 to 1.0
Titanium (Ti), % 0 to 0.050
0
Zinc (Zn), % 0
36.2 to 40.5
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0
0 to 0.4