MakeItFrom.com
Menu (ESC)

AWS BNi-3 vs. C87300 Bronze

AWS BNi-3 belongs to the nickel alloys classification, while C87300 bronze belongs to the copper alloys. There are 19 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-3 and the bottom bar is C87300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 170
120
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 66
43
Tensile Strength: Ultimate (UTS), MPa 430
350

Thermal Properties

Latent Heat of Fusion, J/g 350
280
Melting Completion (Liquidus), °C 1040
970
Melting Onset (Solidus), °C 980
820
Specific Heat Capacity, J/kg-K 480
410
Thermal Expansion, µm/m-K 10
17

Otherwise Unclassified Properties

Base Metal Price, % relative 60
29
Density, g/cm3 8.3
8.6
Embodied Carbon, kg CO2/kg material 9.9
2.7
Embodied Energy, MJ/kg 140
42
Embodied Water, L/kg 220
300

Common Calculations

Stiffness to Weight: Axial, points 12
7.5
Stiffness to Weight: Bending, points 22
19
Strength to Weight: Axial, points 14
11
Strength to Weight: Bending, points 15
13
Thermal Shock Resistance, points 17
13

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Boron (B), % 2.8 to 3.5
0
Carbon (C), % 0 to 0.060
0
Cobalt (Co), % 0 to 0.1
0
Copper (Cu), % 0
94 to 95.7
Iron (Fe), % 0 to 0.5
0 to 0.2
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0
0.8 to 1.5
Nickel (Ni), % 90.1 to 93.3
0
Phosphorus (P), % 0 to 0.020
0
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 4.0 to 5.0
3.5 to 5.0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0 to 0.050
0
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0
0 to 0.5