MakeItFrom.com
Menu (ESC)

AWS BNi-5 vs. Grade 14 Titanium

AWS BNi-5 belongs to the nickel alloys classification, while grade 14 titanium belongs to the titanium alloys. There are 19 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-5 and the bottom bar is grade 14 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 72
41
Tensile Strength: Ultimate (UTS), MPa 470
460

Thermal Properties

Latent Heat of Fusion, J/g 470
420
Melting Completion (Liquidus), °C 1140
1660
Melting Onset (Solidus), °C 1080
1610
Specific Heat Capacity, J/kg-K 510
540
Thermal Expansion, µm/m-K 12
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 55
37
Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 8.9
32
Embodied Energy, MJ/kg 130
520
Embodied Water, L/kg 260
210

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 17
28
Strength to Weight: Bending, points 17
29
Thermal Shock Resistance, points 15
35

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Boron (B), % 0 to 0.030
0
Carbon (C), % 0 to 0.060
0 to 0.080
Chromium (Cr), % 18.5 to 19.5
0
Cobalt (Co), % 0 to 0.1
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0
0 to 0.3
Nickel (Ni), % 69.1 to 71.8
0.4 to 0.6
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.020
0
Ruthenium (Ru), % 0
0.040 to 0.060
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 9.8 to 10.5
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0 to 0.050
98.4 to 99.56
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0
0 to 0.4