MakeItFrom.com
Menu (ESC)

AWS BNi-5 vs. Nickel 333

Both AWS BNi-5 and nickel 333 are nickel alloys. They have 66% of their average alloy composition in common. There are 19 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-5 and the bottom bar is nickel 333.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
81
Tensile Strength: Ultimate (UTS), MPa 470
630

Thermal Properties

Latent Heat of Fusion, J/g 470
320
Melting Completion (Liquidus), °C 1140
1460
Melting Onset (Solidus), °C 1080
1410
Specific Heat Capacity, J/kg-K 510
450
Thermal Expansion, µm/m-K 12
13

Otherwise Unclassified Properties

Base Metal Price, % relative 55
55
Density, g/cm3 7.7
8.5
Embodied Carbon, kg CO2/kg material 8.9
8.5
Embodied Energy, MJ/kg 130
120
Embodied Water, L/kg 260
270

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 17
21
Strength to Weight: Bending, points 17
19
Thermal Shock Resistance, points 15
16

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Boron (B), % 0 to 0.030
0
Carbon (C), % 0 to 0.060
0 to 0.1
Chromium (Cr), % 18.5 to 19.5
24 to 27
Cobalt (Co), % 0 to 0.1
2.5 to 4.0
Iron (Fe), % 0
9.3 to 24.5
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 69.1 to 71.8
44 to 48
Phosphorus (P), % 0 to 0.020
0 to 0.030
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 9.8 to 10.5
0 to 1.5
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0 to 0.050
0
Tungsten (W), % 0
2.5 to 4.0
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0 to 0.5
0