MakeItFrom.com
Menu (ESC)

AWS E110C-K4 vs. C90400 Bronze

AWS E110C-K4 belongs to the iron alloys classification, while C90400 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AWS E110C-K4 and the bottom bar is C90400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17
24
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
41
Tensile Strength: Ultimate (UTS), MPa 850
310
Tensile Strength: Yield (Proof), MPa 780
180

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Melting Completion (Liquidus), °C 1460
990
Melting Onset (Solidus), °C 1410
850
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 41
75
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
12
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
12

Otherwise Unclassified Properties

Base Metal Price, % relative 3.5
34
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 1.7
3.5
Embodied Energy, MJ/kg 23
56
Embodied Water, L/kg 54
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
65
Resilience: Unit (Modulus of Resilience), kJ/m3 1600
150
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 30
10
Strength to Weight: Bending, points 25
12
Thermal Diffusivity, mm2/s 11
23
Thermal Shock Resistance, points 25
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 0.15 to 0.65
0
Copper (Cu), % 0 to 0.35
86 to 89
Iron (Fe), % 92.1 to 98.4
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0.75 to 2.3
0 to 0.010
Molybdenum (Mo), % 0.25 to 0.65
0
Nickel (Ni), % 0.5 to 2.5
0 to 1.0
Phosphorus (P), % 0 to 0.025
0 to 0.050
Silicon (Si), % 0 to 0.8
0 to 0.0050
Sulfur (S), % 0 to 0.025
0.1 to 0.65
Tin (Sn), % 0
7.5 to 8.5
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
1.0 to 5.0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7