MakeItFrom.com
Menu (ESC)

AWS E320 vs. SAE-AISI 1016 Steel

Both AWS E320 and SAE-AISI 1016 steel are iron alloys. They have a modest 38% of their average alloy composition in common, which, by itself, doesn't mean much. There are 20 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is AWS E320 and the bottom bar is SAE-AISI 1016 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
21 to 28
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Tensile Strength: Ultimate (UTS), MPa 620
430 to 480

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Melting Completion (Liquidus), °C 1410
1460
Melting Onset (Solidus), °C 1360
1420
Specific Heat Capacity, J/kg-K 460
470
Thermal Expansion, µm/m-K 14
12

Otherwise Unclassified Properties

Base Metal Price, % relative 38
1.8
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 6.5
1.4
Embodied Energy, MJ/kg 91
18
Embodied Water, L/kg 220
46

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 21
15 to 17
Strength to Weight: Bending, points 20
16 to 17
Thermal Shock Resistance, points 16
13 to 15

Alloy Composition

Carbon (C), % 0 to 0.070
0.13 to 0.18
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 31.8 to 43.5
98.8 to 99.27
Manganese (Mn), % 0.5 to 2.5
0.6 to 0.9
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 32 to 36
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.030
0 to 0.050