MakeItFrom.com
Menu (ESC)

AWS E330H vs. AWS BNi-3

AWS E330H belongs to the iron alloys classification, while AWS BNi-3 belongs to the nickel alloys. They have a modest 36% of their average alloy composition in common, which, by itself, doesn't mean much. There are 19 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AWS E330H and the bottom bar is AWS BNi-3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
170
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 76
66
Tensile Strength: Ultimate (UTS), MPa 690
430

Thermal Properties

Latent Heat of Fusion, J/g 290
350
Melting Completion (Liquidus), °C 1400
1040
Melting Onset (Solidus), °C 1350
980
Specific Heat Capacity, J/kg-K 470
480
Thermal Expansion, µm/m-K 13
10

Otherwise Unclassified Properties

Base Metal Price, % relative 30
60
Density, g/cm3 8.1
8.3
Embodied Carbon, kg CO2/kg material 5.4
9.9
Embodied Energy, MJ/kg 76
140
Embodied Water, L/kg 180
220

Common Calculations

Stiffness to Weight: Axial, points 13
12
Stiffness to Weight: Bending, points 24
22
Strength to Weight: Axial, points 24
14
Strength to Weight: Bending, points 22
15
Thermal Shock Resistance, points 19
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Boron (B), % 0
2.8 to 3.5
Carbon (C), % 0.35 to 0.45
0 to 0.060
Chromium (Cr), % 14 to 17
0
Cobalt (Co), % 0
0 to 0.1
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 40.5 to 51.7
0 to 0.5
Manganese (Mn), % 1.0 to 2.5
0
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 33 to 37
90.1 to 93.3
Phosphorus (P), % 0 to 0.040
0 to 0.020
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0 to 1.0
4.0 to 5.0
Sulfur (S), % 0 to 0.030
0 to 0.020
Titanium (Ti), % 0
0 to 0.050
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0
0 to 0.5