MakeItFrom.com
Menu (ESC)

AWS E383 vs. EN 1.5113 Steel

Both AWS E383 and EN 1.5113 steel are iron alloys. They have a modest 36% of their average alloy composition in common, which, by itself, doesn't mean much. There are 22 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is AWS E383 and the bottom bar is EN 1.5113 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 34
11 to 18
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 80
72
Tensile Strength: Ultimate (UTS), MPa 580
580 to 900

Thermal Properties

Latent Heat of Fusion, J/g 320
260
Melting Completion (Liquidus), °C 1420
1450
Melting Onset (Solidus), °C 1370
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 12
52
Thermal Expansion, µm/m-K 14
13

Otherwise Unclassified Properties

Base Metal Price, % relative 37
2.0
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 6.4
1.4
Embodied Energy, MJ/kg 89
19
Embodied Water, L/kg 240
48

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
21 to 32
Strength to Weight: Bending, points 19
20 to 27
Thermal Diffusivity, mm2/s 3.1
14
Thermal Shock Resistance, points 15
17 to 26

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.1
Chromium (Cr), % 26.5 to 29
0
Copper (Cu), % 0.6 to 1.5
0
Iron (Fe), % 28.8 to 39.2
97 to 97.5
Manganese (Mn), % 0.5 to 2.5
1.6 to 1.8
Molybdenum (Mo), % 3.2 to 4.2
0
Nickel (Ni), % 30 to 33
0
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 0.9
0.9 to 1.1
Sulfur (S), % 0 to 0.020
0 to 0.025