MakeItFrom.com
Menu (ESC)

AWS E383 vs. EN 2.4650 Nickel

AWS E383 belongs to the iron alloys classification, while EN 2.4650 nickel belongs to the nickel alloys. They have 56% of their average alloy composition in common. There are 22 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AWS E383 and the bottom bar is EN 2.4650 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
210
Elongation at Break, % 34
34
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 80
80
Tensile Strength: Ultimate (UTS), MPa 580
1090

Thermal Properties

Latent Heat of Fusion, J/g 320
320
Melting Completion (Liquidus), °C 1420
1400
Melting Onset (Solidus), °C 1370
1350
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 12
12
Thermal Expansion, µm/m-K 14
11

Otherwise Unclassified Properties

Base Metal Price, % relative 37
80
Density, g/cm3 8.1
8.5
Embodied Carbon, kg CO2/kg material 6.4
10
Embodied Energy, MJ/kg 89
140
Embodied Water, L/kg 240
360

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 20
36
Strength to Weight: Bending, points 19
28
Thermal Diffusivity, mm2/s 3.1
3.1
Thermal Shock Resistance, points 15
33

Alloy Composition

Aluminum (Al), % 0
0.3 to 0.6
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.030
0.040 to 0.080
Chromium (Cr), % 26.5 to 29
19 to 21
Cobalt (Co), % 0
19 to 21
Copper (Cu), % 0.6 to 1.5
0 to 0.2
Iron (Fe), % 28.8 to 39.2
0 to 0.7
Manganese (Mn), % 0.5 to 2.5
0 to 0.6
Molybdenum (Mo), % 3.2 to 4.2
5.6 to 6.1
Nickel (Ni), % 30 to 33
46.9 to 54.2
Phosphorus (P), % 0 to 0.020
0 to 0.020
Silicon (Si), % 0 to 0.9
0 to 0.4
Sulfur (S), % 0 to 0.020
0 to 0.0070
Titanium (Ti), % 0
1.9 to 2.4