MakeItFrom.com
Menu (ESC)

AWS E383 vs. CC330G Bronze

AWS E383 belongs to the iron alloys classification, while CC330G bronze belongs to the copper alloys. There are 22 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AWS E383 and the bottom bar is CC330G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 34
20
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 80
42
Tensile Strength: Ultimate (UTS), MPa 580
530

Thermal Properties

Latent Heat of Fusion, J/g 320
230
Melting Completion (Liquidus), °C 1420
1050
Melting Onset (Solidus), °C 1370
1000
Specific Heat Capacity, J/kg-K 470
430
Thermal Conductivity, W/m-K 12
62
Thermal Expansion, µm/m-K 14
18

Otherwise Unclassified Properties

Base Metal Price, % relative 37
29
Density, g/cm3 8.1
8.4
Embodied Carbon, kg CO2/kg material 6.4
3.2
Embodied Energy, MJ/kg 89
52
Embodied Water, L/kg 240
390

Common Calculations

Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 20
18
Strength to Weight: Bending, points 19
17
Thermal Diffusivity, mm2/s 3.1
17
Thermal Shock Resistance, points 15
19

Alloy Composition

Aluminum (Al), % 0
8.0 to 10.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 26.5 to 29
0
Copper (Cu), % 0.6 to 1.5
87 to 92
Iron (Fe), % 28.8 to 39.2
0 to 1.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0.5 to 2.5
0 to 0.5
Molybdenum (Mo), % 3.2 to 4.2
0
Nickel (Ni), % 30 to 33
0 to 1.0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.9
0 to 0.2
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
0 to 0.5