MakeItFrom.com
Menu (ESC)

AWS E383 vs. SAE-AISI A4 Steel

Both AWS E383 and SAE-AISI A4 steel are iron alloys. They have a modest 39% of their average alloy composition in common, which, by itself, doesn't mean much. There are 22 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AWS E383 and the bottom bar is SAE-AISI A4 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 80
73
Tensile Strength: Ultimate (UTS), MPa 580
710 to 2050

Thermal Properties

Latent Heat of Fusion, J/g 320
250
Melting Completion (Liquidus), °C 1420
1450
Melting Onset (Solidus), °C 1370
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 12
40
Thermal Expansion, µm/m-K 14
12

Otherwise Unclassified Properties

Base Metal Price, % relative 37
3.9
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 6.4
1.8
Embodied Energy, MJ/kg 89
24
Embodied Water, L/kg 240
59

Common Calculations

PREN (Pitting Resistance) 40
5.3
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
25 to 73
Strength to Weight: Bending, points 19
23 to 46
Thermal Diffusivity, mm2/s 3.1
11
Thermal Shock Resistance, points 15
23 to 67

Alloy Composition

Carbon (C), % 0 to 0.030
1.0 to 1.1
Chromium (Cr), % 26.5 to 29
0.9 to 2.2
Copper (Cu), % 0.6 to 1.5
0 to 0.25
Iron (Fe), % 28.8 to 39.2
92 to 95.5
Manganese (Mn), % 0.5 to 2.5
1.8 to 2.2
Molybdenum (Mo), % 3.2 to 4.2
0.9 to 1.4
Nickel (Ni), % 30 to 33
0 to 0.3
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0 to 0.9
0 to 0.5
Sulfur (S), % 0 to 0.020
0 to 0.030