MakeItFrom.com
Menu (ESC)

AWS E383 vs. SAE-AISI F1 Steel

Both AWS E383 and SAE-AISI F1 steel are iron alloys. They have a modest 35% of their average alloy composition in common, which, by itself, doesn't mean much. There are 22 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AWS E383 and the bottom bar is SAE-AISI F1 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 80
72
Tensile Strength: Ultimate (UTS), MPa 580
620 to 2320

Thermal Properties

Latent Heat of Fusion, J/g 320
250
Melting Completion (Liquidus), °C 1420
1480
Melting Onset (Solidus), °C 1370
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 12
45
Thermal Expansion, µm/m-K 14
13

Otherwise Unclassified Properties

Base Metal Price, % relative 37
5.0
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 6.4
1.7
Embodied Energy, MJ/kg 89
24
Embodied Water, L/kg 240
46

Common Calculations

PREN (Pitting Resistance) 40
2.3
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
22 to 82
Strength to Weight: Bending, points 19
20 to 49
Thermal Diffusivity, mm2/s 3.1
12
Thermal Shock Resistance, points 15
19 to 70

Alloy Composition

Carbon (C), % 0 to 0.030
1.0 to 1.3
Chromium (Cr), % 26.5 to 29
0
Copper (Cu), % 0.6 to 1.5
0
Iron (Fe), % 28.8 to 39.2
95.9 to 98
Manganese (Mn), % 0.5 to 2.5
0 to 0.5
Molybdenum (Mo), % 3.2 to 4.2
0
Nickel (Ni), % 30 to 33
0
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0 to 0.9
0.1 to 0.5
Sulfur (S), % 0 to 0.020
0 to 0.030
Tungsten (W), % 0
1.0 to 1.8