MakeItFrom.com
Menu (ESC)

AWS E383 vs. SAE-AISI H13 Steel

Both AWS E383 and SAE-AISI H13 steel are iron alloys. They have 42% of their average alloy composition in common. There are 22 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AWS E383 and the bottom bar is SAE-AISI H13 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 80
74
Tensile Strength: Ultimate (UTS), MPa 580
690 to 1820

Thermal Properties

Latent Heat of Fusion, J/g 320
270
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1370
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 12
29
Thermal Expansion, µm/m-K 14
10

Otherwise Unclassified Properties

Base Metal Price, % relative 37
6.0
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 6.4
4.3
Embodied Energy, MJ/kg 89
64
Embodied Water, L/kg 240
78

Common Calculations

PREN (Pitting Resistance) 40
9.9
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
25 to 65
Strength to Weight: Bending, points 19
22 to 43
Thermal Diffusivity, mm2/s 3.1
7.8
Thermal Shock Resistance, points 15
25 to 65

Alloy Composition

Carbon (C), % 0 to 0.030
0.32 to 0.45
Chromium (Cr), % 26.5 to 29
4.8 to 5.5
Copper (Cu), % 0.6 to 1.5
0 to 0.25
Iron (Fe), % 28.8 to 39.2
88.8 to 92
Manganese (Mn), % 0.5 to 2.5
0.2 to 0.5
Molybdenum (Mo), % 3.2 to 4.2
1.1 to 1.8
Nickel (Ni), % 30 to 33
0 to 0.3
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0 to 0.9
0.8 to 1.2
Sulfur (S), % 0 to 0.020
0 to 0.030
Vanadium (V), % 0
0.8 to 1.2