MakeItFrom.com
Menu (ESC)

AWS E383 vs. C86700 Bronze

AWS E383 belongs to the iron alloys classification, while C86700 bronze belongs to the copper alloys. There are 22 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AWS E383 and the bottom bar is C86700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 34
17
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 80
41
Tensile Strength: Ultimate (UTS), MPa 580
630

Thermal Properties

Latent Heat of Fusion, J/g 320
180
Melting Completion (Liquidus), °C 1420
880
Melting Onset (Solidus), °C 1370
860
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 12
89
Thermal Expansion, µm/m-K 14
20

Otherwise Unclassified Properties

Base Metal Price, % relative 37
23
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 6.4
2.9
Embodied Energy, MJ/kg 89
49
Embodied Water, L/kg 240
340

Common Calculations

Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 20
22
Strength to Weight: Bending, points 19
21
Thermal Diffusivity, mm2/s 3.1
28
Thermal Shock Resistance, points 15
21

Alloy Composition

Aluminum (Al), % 0
1.0 to 3.0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 26.5 to 29
0
Copper (Cu), % 0.6 to 1.5
55 to 60
Iron (Fe), % 28.8 to 39.2
1.0 to 3.0
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 0.5 to 2.5
1.0 to 3.5
Molybdenum (Mo), % 3.2 to 4.2
0
Nickel (Ni), % 30 to 33
0 to 1.0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.9
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 1.5
Zinc (Zn), % 0
30 to 38
Residuals, % 0
0 to 1.0