MakeItFrom.com
Menu (ESC)

AWS E430Nb vs. Nickel 693

AWS E430Nb belongs to the iron alloys classification, while nickel 693 belongs to the nickel alloys. They have a modest 23% of their average alloy composition in common, which, by itself, doesn't mean much. There are 22 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AWS E430Nb and the bottom bar is nickel 693.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23
34
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Tensile Strength: Ultimate (UTS), MPa 500
660

Thermal Properties

Latent Heat of Fusion, J/g 280
330
Melting Completion (Liquidus), °C 1450
1350
Melting Onset (Solidus), °C 1410
1310
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 24
9.1
Thermal Expansion, µm/m-K 14
13

Otherwise Unclassified Properties

Base Metal Price, % relative 15
60
Density, g/cm3 7.7
8.1
Embodied Carbon, kg CO2/kg material 3.1
9.9
Embodied Energy, MJ/kg 45
140
Embodied Water, L/kg 120
320

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18
23
Strength to Weight: Bending, points 18
21
Thermal Diffusivity, mm2/s 6.6
2.3
Thermal Shock Resistance, points 13
19

Alloy Composition

Aluminum (Al), % 0
2.5 to 4.0
Carbon (C), % 0 to 0.1
0 to 0.15
Chromium (Cr), % 15 to 18
27 to 31
Copper (Cu), % 0 to 0.75
0 to 0.5
Iron (Fe), % 76.2 to 84.5
2.5 to 6.0
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 0 to 0.6
53.3 to 67.5
Niobium (Nb), % 0.5 to 1.5
0.5 to 2.5
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 1.0