MakeItFrom.com
Menu (ESC)

AWS E630 vs. C81500 Copper

AWS E630 belongs to the iron alloys classification, while C81500 copper belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AWS E630 and the bottom bar is C81500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 8.0
17
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
44
Tensile Strength: Ultimate (UTS), MPa 1040
350

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Melting Completion (Liquidus), °C 1430
1090
Melting Onset (Solidus), °C 1380
1080
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 17
320
Thermal Expansion, µm/m-K 14
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
82
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
83

Otherwise Unclassified Properties

Base Metal Price, % relative 14
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 40
41
Embodied Water, L/kg 140
310

Common Calculations

Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 37
11
Strength to Weight: Bending, points 29
12
Thermal Diffusivity, mm2/s 4.5
91
Thermal Shock Resistance, points 28
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 16 to 16.8
0.4 to 1.5
Copper (Cu), % 3.3 to 4.0
97.4 to 99.6
Iron (Fe), % 71.6 to 75.9
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.25 to 0.75
0
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 4.5 to 5.0
0
Niobium (Nb), % 0.15 to 0.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.75
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5