MakeItFrom.com
Menu (ESC)

AWS E630 vs. R30001 Cobalt

AWS E630 belongs to the iron alloys classification, while R30001 cobalt belongs to the cobalt alloys. They have a modest 20% of their average alloy composition in common, which, by itself, doesn't mean much. There are 23 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS E630 and the bottom bar is R30001 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
220
Elongation at Break, % 8.0
1.0
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
86
Tensile Strength: Ultimate (UTS), MPa 1040
620

Thermal Properties

Latent Heat of Fusion, J/g 280
310
Melting Completion (Liquidus), °C 1430
1530
Melting Onset (Solidus), °C 1380
1260
Specific Heat Capacity, J/kg-K 470
430
Thermal Conductivity, W/m-K 17
15
Thermal Expansion, µm/m-K 14
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
1.8

Otherwise Unclassified Properties

Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 2.8
8.9
Embodied Energy, MJ/kg 40
130
Embodied Water, L/kg 140
460

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
22
Strength to Weight: Axial, points 37
19
Strength to Weight: Bending, points 29
18
Thermal Diffusivity, mm2/s 4.5
3.7
Thermal Shock Resistance, points 28
19

Alloy Composition

Carbon (C), % 0 to 0.050
2.0 to 3.0
Chromium (Cr), % 16 to 16.8
28 to 32
Cobalt (Co), % 0
43 to 59
Copper (Cu), % 3.3 to 4.0
0
Iron (Fe), % 71.6 to 75.9
0 to 3.0
Manganese (Mn), % 0.25 to 0.75
0
Molybdenum (Mo), % 0 to 0.75
0 to 1.0
Nickel (Ni), % 4.5 to 5.0
0 to 3.0
Niobium (Nb), % 0.15 to 0.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.75
0 to 2.0
Sulfur (S), % 0 to 0.030
0
Tungsten (W), % 0
11 to 13