MakeItFrom.com
Menu (ESC)

AWS E630 vs. S40975 Stainless Steel

Both AWS E630 and S40975 stainless steel are iron alloys. They have 87% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AWS E630 and the bottom bar is S40975 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 8.0
22
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
75
Tensile Strength: Ultimate (UTS), MPa 1040
460

Thermal Properties

Latent Heat of Fusion, J/g 280
270
Melting Completion (Liquidus), °C 1430
1450
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 17
26
Thermal Expansion, µm/m-K 14
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 14
6.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.0
Embodied Energy, MJ/kg 40
28
Embodied Water, L/kg 140
95

Common Calculations

PREN (Pitting Resistance) 18
11
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 37
17
Strength to Weight: Bending, points 29
17
Thermal Diffusivity, mm2/s 4.5
7.0
Thermal Shock Resistance, points 28
17

Alloy Composition

Carbon (C), % 0 to 0.050
0 to 0.030
Chromium (Cr), % 16 to 16.8
10.5 to 11.7
Copper (Cu), % 3.3 to 4.0
0
Iron (Fe), % 71.6 to 75.9
84.4 to 89
Manganese (Mn), % 0.25 to 0.75
0 to 1.0
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 4.5 to 5.0
0.5 to 1.0
Niobium (Nb), % 0.15 to 0.3
0
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0 to 0.75