MakeItFrom.com
Menu (ESC)

AWS E80C-Ni2 vs. AISI 434 Stainless Steel

Both AWS E80C-Ni2 and AISI 434 stainless steel are iron alloys. They have 82% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AWS E80C-Ni2 and the bottom bar is AISI 434 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 27
24
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
78
Tensile Strength: Ultimate (UTS), MPa 620
520
Tensile Strength: Yield (Proof), MPa 540
320

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Melting Completion (Liquidus), °C 1450
1510
Melting Onset (Solidus), °C 1410
1430
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 52
25
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 3.3
9.5
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.6
2.4
Embodied Energy, MJ/kg 22
33
Embodied Water, L/kg 51
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
110
Resilience: Unit (Modulus of Resilience), kJ/m3 770
260
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22
19
Strength to Weight: Bending, points 21
18
Thermal Diffusivity, mm2/s 14
6.7
Thermal Shock Resistance, points 18
19

Alloy Composition

Carbon (C), % 0 to 0.12
0 to 0.12
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 93.8 to 98.3
78.6 to 83.3
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
0.75 to 1.3
Nickel (Ni), % 1.8 to 2.8
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.9
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Vanadium (V), % 0 to 0.030
0
Residuals, % 0 to 0.5
0