MakeItFrom.com
Menu (ESC)

AWS E80C-Ni2 vs. EN 1.4982 Stainless Steel

Both AWS E80C-Ni2 and EN 1.4982 stainless steel are iron alloys. They have 69% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AWS E80C-Ni2 and the bottom bar is EN 1.4982 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 27
28
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
76
Tensile Strength: Ultimate (UTS), MPa 620
750
Tensile Strength: Yield (Proof), MPa 540
570

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1410
1390
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 52
13
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 3.3
22
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.6
4.9
Embodied Energy, MJ/kg 22
71
Embodied Water, L/kg 51
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
190
Resilience: Unit (Modulus of Resilience), kJ/m3 770
830
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22
27
Strength to Weight: Bending, points 21
23
Thermal Diffusivity, mm2/s 14
3.4
Thermal Shock Resistance, points 18
17

Alloy Composition

Boron (B), % 0
0.0030 to 0.0090
Carbon (C), % 0 to 0.12
0.070 to 0.13
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 93.8 to 98.3
61.8 to 69.7
Manganese (Mn), % 0 to 1.5
5.5 to 7.0
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 1.8 to 2.8
9.0 to 11
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.9
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Vanadium (V), % 0 to 0.030
0.15 to 0.4
Residuals, % 0 to 0.5
0