MakeItFrom.com
Menu (ESC)

AWS ER80S-B8 vs. 5051A Aluminum

AWS ER80S-B8 belongs to the iron alloys classification, while 5051A aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS ER80S-B8 and the bottom bar is 5051A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 19
18 to 21
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Tensile Strength: Ultimate (UTS), MPa 630
170
Tensile Strength: Yield (Proof), MPa 530
56

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1410
610
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 26
150
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
39
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
130

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 2.0
8.5
Embodied Energy, MJ/kg 28
150
Embodied Water, L/kg 89
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
24 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 720
23
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 22
17 to 18
Strength to Weight: Bending, points 21
25
Thermal Diffusivity, mm2/s 6.9
63
Thermal Shock Resistance, points 17
7.6

Alloy Composition

Aluminum (Al), % 0
96.1 to 98.6
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 8.0 to 10.5
0 to 0.3
Copper (Cu), % 0 to 0.35
0 to 0.050
Iron (Fe), % 85.6 to 90.8
0 to 0.45
Magnesium (Mg), % 0
1.4 to 2.1
Manganese (Mn), % 0.4 to 0.7
0 to 0.25
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0 to 0.3
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15