MakeItFrom.com
Menu (ESC)

AWS ER80S-Ni1 vs. Grade 5 Titanium

AWS ER80S-Ni1 belongs to the iron alloys classification, while grade 5 titanium belongs to the titanium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS ER80S-Ni1 and the bottom bar is grade 5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 27
8.6 to 11
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 72
40
Tensile Strength: Ultimate (UTS), MPa 630
1000 to 1190
Tensile Strength: Yield (Proof), MPa 530
910 to 1110

Thermal Properties

Latent Heat of Fusion, J/g 260
410
Melting Completion (Liquidus), °C 1450
1610
Melting Onset (Solidus), °C 1410
1650
Specific Heat Capacity, J/kg-K 470
560
Thermal Conductivity, W/m-K 41
6.8
Thermal Expansion, µm/m-K 13
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 2.7
36
Density, g/cm3 7.8
4.4
Embodied Carbon, kg CO2/kg material 1.6
38
Embodied Energy, MJ/kg 21
610
Embodied Water, L/kg 49
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
100 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 740
3980 to 5880
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 22
62 to 75
Strength to Weight: Bending, points 21
50 to 56
Thermal Diffusivity, mm2/s 11
2.7
Thermal Shock Resistance, points 19
76 to 91

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0 to 0.12
0 to 0.080
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.35
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 95.3 to 98.8
0 to 0.4
Manganese (Mn), % 0 to 1.3
0
Molybdenum (Mo), % 0 to 0.35
0
Nickel (Ni), % 0.8 to 1.1
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.4 to 0.8
0
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
87.4 to 91
Vanadium (V), % 0 to 0.050
3.5 to 4.5
Yttrium (Y), % 0
0 to 0.0050
Residuals, % 0
0 to 0.4