MakeItFrom.com
Menu (ESC)

AWS ER80S-Ni1 vs. C22000 Bronze

AWS ER80S-Ni1 belongs to the iron alloys classification, while C22000 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS ER80S-Ni1 and the bottom bar is C22000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 27
1.9 to 45
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
42
Tensile Strength: Ultimate (UTS), MPa 630
260 to 520
Tensile Strength: Yield (Proof), MPa 530
69 to 500

Thermal Properties

Latent Heat of Fusion, J/g 260
200
Melting Completion (Liquidus), °C 1450
1040
Melting Onset (Solidus), °C 1410
1020
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 41
190
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
44
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
45

Otherwise Unclassified Properties

Base Metal Price, % relative 2.7
29
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 1.6
2.6
Embodied Energy, MJ/kg 21
42
Embodied Water, L/kg 49
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
3.7 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 740
21 to 1110
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 22
8.1 to 17
Strength to Weight: Bending, points 21
10 to 17
Thermal Diffusivity, mm2/s 11
56
Thermal Shock Resistance, points 19
8.8 to 18

Alloy Composition

Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.35
89 to 91
Iron (Fe), % 95.3 to 98.8
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.3
0
Molybdenum (Mo), % 0 to 0.35
0
Nickel (Ni), % 0.8 to 1.1
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.4 to 0.8
0
Sulfur (S), % 0 to 0.025
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0
8.7 to 11
Residuals, % 0
0 to 0.2