MakeItFrom.com
Menu (ESC)

AWS ER90S-B9 vs. AWS E383

Both AWS ER90S-B9 and AWS E383 are iron alloys. They have 46% of their average alloy composition in common. There are 23 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS ER90S-B9 and the bottom bar is AWS E383.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 18
34
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
80
Tensile Strength: Ultimate (UTS), MPa 690
580

Thermal Properties

Latent Heat of Fusion, J/g 270
320
Melting Completion (Liquidus), °C 1450
1420
Melting Onset (Solidus), °C 1410
1370
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 25
12
Thermal Expansion, µm/m-K 13
14

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
37
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 2.6
6.4
Embodied Energy, MJ/kg 37
89
Embodied Water, L/kg 91
240

Common Calculations

PREN (Pitting Resistance) 13
40
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 25
20
Strength to Weight: Bending, points 22
19
Thermal Diffusivity, mm2/s 6.9
3.1
Thermal Shock Resistance, points 19
15

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.070 to 0.13
0 to 0.030
Chromium (Cr), % 8.0 to 10.5
26.5 to 29
Copper (Cu), % 0 to 0.2
0.6 to 1.5
Iron (Fe), % 84.4 to 90.7
28.8 to 39.2
Manganese (Mn), % 0 to 1.2
0.5 to 2.5
Molybdenum (Mo), % 0.85 to 1.2
3.2 to 4.2
Nickel (Ni), % 0 to 0.8
30 to 33
Niobium (Nb), % 0.020 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.010
0 to 0.020
Silicon (Si), % 0.15 to 0.5
0 to 0.9
Sulfur (S), % 0 to 0.010
0 to 0.020
Vanadium (V), % 0.15 to 0.3
0
Residuals, % 0 to 0.5
0